
 1

Tools and Techniques for Designing Tools and Techniques for Designing
and Evaluating Self-Healing Systemsand Evaluating Self-Healing Systems

Rean Griffith, Ritika Virmani, Gail KaiserRean Griffith, Ritika Virmani, Gail Kaiser
Programming Systems Lab (PSL)Programming Systems Lab (PSL)

Columbia UniversityColumbia University

Presented byPresented by
Rean GriffithRean Griffith

 2

OverviewOverview

►IntroductionIntroduction
►ChallengesChallenges
►ProblemProblem
►HypothesisHypothesis
►ExperimentsExperiments
►Conclusion & Future WorkConclusion & Future Work

 3

IntroductionIntroduction
►A self-healing system “…automatically A self-healing system “…automatically

detects, diagnoses and repairs localized detects, diagnoses and repairs localized
software and hardware problems” – software and hardware problems” – The The
Vision of Autonomic Computing 2003 IEEE Computer Vision of Autonomic Computing 2003 IEEE Computer
SocietySociety

 4

ChallengesChallenges
►How do we evaluate the efficacy of a self-How do we evaluate the efficacy of a self-

healing system and its mechanisms?healing system and its mechanisms?
 How do we quantify the impact of the How do we quantify the impact of the

problems these systems should resolve?problems these systems should resolve?
 How can we reason about expected benefits How can we reason about expected benefits

for systems currently lacking self-healing for systems currently lacking self-healing
mechanisms?mechanisms?

 How do we quantify the efficacy of individual How do we quantify the efficacy of individual
and combined self-healing mechanisms and and combined self-healing mechanisms and
reason about tradeoffs?reason about tradeoffs?

 How do we identify sub-optimal mechanisms?How do we identify sub-optimal mechanisms?

 5

MotivationMotivation
►Performance metrics are not a perfect Performance metrics are not a perfect

proxy for “better self-healing capabilities”proxy for “better self-healing capabilities”
 Faster != “Better at self-healing”Faster != “Better at self-healing”
 Faster != “Has better self-healing facilities”Faster != “Has better self-healing facilities”

►Performance metrics provide insights into Performance metrics provide insights into
the feasibility of using a self-healing the feasibility of using a self-healing
system with its self-healing mechanisms system with its self-healing mechanisms
activeactive

►Performance metrics are still important, Performance metrics are still important,
but they are not the complete storybut they are not the complete story

 6

ProblemProblem
►Evaluating self-healing systems and their Evaluating self-healing systems and their

mechanisms is non-trivialmechanisms is non-trivial
 Studying the failure behavior of systems can Studying the failure behavior of systems can

be difficultbe difficult
 Finding fault-injection tools that exercise the Finding fault-injection tools that exercise the

remediation mechanisms available is difficultremediation mechanisms available is difficult
 Multiple styles of healing to consider (reactive, Multiple styles of healing to consider (reactive,

preventative, proactive)preventative, proactive)
 Accounting for imperfect repair scenariosAccounting for imperfect repair scenarios
 Partially automated repairs are possiblePartially automated repairs are possible

 7

Proposed SolutionsProposed Solutions
►Studying failure behaviorStudying failure behavior
 ““In-situ” observation in deployment In-situ” observation in deployment

environment via dynamic instrumentation toolsenvironment via dynamic instrumentation tools
►Identifying suitable fault-injection toolsIdentifying suitable fault-injection tools
 ““In-vivo” fault-injection at the appropriate In-vivo” fault-injection at the appropriate

granularity via runtime adaptation toolsgranularity via runtime adaptation tools
►Analyzing multiple remediation styles and Analyzing multiple remediation styles and

repair scenarios (perfect vs. imperfect repair scenarios (perfect vs. imperfect
repair, partially automated healing etc.)repair, partially automated healing etc.)
 Mathematical models (Continuous Time Mathematical models (Continuous Time

Markov Chains, Control Theory models etc.)Markov Chains, Control Theory models etc.)

 8

HypothesesHypotheses
► Runtime adaptation is a reasonable technology for Runtime adaptation is a reasonable technology for

implementing efficient and flexible fault-injection toolsimplementing efficient and flexible fault-injection tools
► Mathematical models e.g. Continuous Time Markov Mathematical models e.g. Continuous Time Markov

Chains (CTMCs), Markov Reward Models and Control Chains (CTMCs), Markov Reward Models and Control
Theory models are a reasonable framework for analyzing Theory models are a reasonable framework for analyzing
system failures, remediation mechanisms and their system failures, remediation mechanisms and their
impact on system operationimpact on system operation

► Combining runtime adaptation with mathematical models Combining runtime adaptation with mathematical models
allows us to conduct fault-injection experiments that can allows us to conduct fault-injection experiments that can
be used to investigate the link between the details of a be used to investigate the link between the details of a
remediation mechanism and the mechanism’s impact on remediation mechanism and the mechanism’s impact on
the high-level goals governing the system’s operation, the high-level goals governing the system’s operation,
supporting the comparison of individual or combined supporting the comparison of individual or combined
mechanismsmechanisms

 9

Runtime Fault-Injection ToolsRuntime Fault-Injection Tools
►Kheiron/JVM (ICAC 2006)Kheiron/JVM (ICAC 2006)

 Uses byte-code rewriting to inject faults into Uses byte-code rewriting to inject faults into
running Java applicationsrunning Java applications

 Includes: memory leaks, hangs, delays etc.Includes: memory leaks, hangs, delays etc.
 Two other versions of Kheiron exist (CLR & C)Two other versions of Kheiron exist (CLR & C)
 C-version uses Dyninst binary rewriting toolC-version uses Dyninst binary rewriting tool

►Nooks Device-Driver Fault-Injection ToolsNooks Device-Driver Fault-Injection Tools
 Developed at UW for Linux 2.4.18 (Swift et. al)Developed at UW for Linux 2.4.18 (Swift et. al)
 Uses the kernel module interface to inject faultsUses the kernel module interface to inject faults
 Includes: text faults, stack faults, hangs etc.Includes: text faults, stack faults, hangs etc.
 We ported it to Linux 2.6.20 (Summer 07)We ported it to Linux 2.6.20 (Summer 07)

 10

Mathematical TechniquesMathematical Techniques

►Continuous Time Markov Chains (PMCCS-8)Continuous Time Markov Chains (PMCCS-8)
 Reliability & Availability AnalysisReliability & Availability Analysis
 Remediation stylesRemediation styles

►Markov Reward Networks (PMCCS-8)Markov Reward Networks (PMCCS-8)
 Failure Impact (SLA penalties, downtime)Failure Impact (SLA penalties, downtime)
 Remediation Impact (cost, time, labor, Remediation Impact (cost, time, labor,

production delays)production delays)
►Control Theory Models (Preliminary Work)Control Theory Models (Preliminary Work)

 Regulation of Availability/Reliability ObjectivesRegulation of Availability/Reliability Objectives
 Reasoning about StabilityReasoning about Stability

 11

Fault-Injection ExperimentsFault-Injection Experiments

►ObjectiveObjective
 To inject faults into the components a multi-To inject faults into the components a multi-

component n-tier web application – specifically component n-tier web application – specifically
the application server and Operating System the application server and Operating System
componentscomponents

 Observe its responses and the responses of any Observe its responses and the responses of any
remediation mechanisms availableremediation mechanisms available

 Model and evaluate available mechanismsModel and evaluate available mechanisms
 Identify weaknessesIdentify weaknesses

 12

Experiment SetupExperiment Setup
Target: 3-Tier Web Application

TPC-W Web-application
Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5
MySQL 5.0.27
Linux 2.4.18

Remote Browser Emulation clients to simulate user loads

 13

Healing Mechanisms AvailableHealing Mechanisms Available
►Application ServerApplication Server

 Automatic restartsAutomatic restarts
►Operating SystemOperating System

 Nooks device driver protection frameworkNooks device driver protection framework
 Manual system rebootManual system reboot

 14

MetricsMetrics
►Continuous Time Markov Chains (CTMCs)Continuous Time Markov Chains (CTMCs)

 Limiting/steady-state availabilityLimiting/steady-state availability
 Yearly downtimeYearly downtime
 Repair success rates (fault-coverage)Repair success rates (fault-coverage)
 Repair timesRepair times

►Markov Reward NetworksMarkov Reward Networks
 Downtime costs (time, money, #service visits Downtime costs (time, money, #service visits

etc.)etc.)
 Expected SLA penaltiesExpected SLA penalties

 15

Application Server Memory LeaksApplication Server Memory Leaks
►Memory leak condition causing an Memory leak condition causing an

automatic application server restart every automatic application server restart every
8.1593 hours (95% confidence interval)8.1593 hours (95% confidence interval)

 16

Resin Memory-Leak Handler Resin Memory-Leak Handler
AnalysisAnalysis

► Analyzing perfect recovery e.g. Analyzing perfect recovery e.g.
mechanisms addressing resource mechanisms addressing resource
leaks/fatal crashesleaks/fatal crashes
 SS00 – UP state, system working – UP state, system working
 SS11 – DOWN state, system – DOWN state, system

restartingrestarting
 λλfailurefailure = 1 every 8 hours = 1 every 8 hours
 µµrestartrestart = 47 seconds = 47 seconds

► Attaching a value to each state Attaching a value to each state
allows us to evaluate the allows us to evaluate the
cost/time impact associated with cost/time impact associated with
these failures.these failures.

Results:
Steady state
availability: 99.838%
Downtime per year:
866 minutes

 17

Linux w/Nooks Recovery AnalysisLinux w/Nooks Recovery Analysis
► Analyzing imperfect recovery e.g. Analyzing imperfect recovery e.g.

device driver recovery using Nooksdevice driver recovery using Nooks
 SS00 – UP state, system working – UP state, system working

 SS11 – UP state, recovering failed – UP state, recovering failed
driverdriver

 SS22 – DOWN state, system reboot – DOWN state, system reboot

 λλdriver_failure driver_failure = 4 faults every 8 hrs= 4 faults every 8 hrs

 µµnooks_recovery nooks_recovery = 4,093 mu seconds= 4,093 mu seconds

 µµreboot reboot = 82 seconds= 82 seconds

 c – coverage factor/success ratec – coverage factor/success rate

 18

Resin + Linux + Nooks AnalysisResin + Linux + Nooks Analysis
► Composing Markov chainsComposing Markov chains

 SS00 – UP state, system working – UP state, system working

 SS11 – UP state, recovering failed – UP state, recovering failed
driverdriver

 SS22 – DOWN state, system reboot – DOWN state, system reboot

 SS33 – DOWN state, Resin reboot – DOWN state, Resin reboot

 λλdriver_failure driver_failure = 4 faults every 8 hrs= 4 faults every 8 hrs

 µµnooks_recovery nooks_recovery = 4,093 mu seconds= 4,093 mu seconds

 µµreboot reboot = 82 seconds= 82 seconds

 c – coverage factorc – coverage factor
 λλmemory_leak_ memory_leak_ = 1 every 8 hours= 1 every 8 hours

 µµrestart_resin restart_resin = 47 seconds= 47 seconds

Max availability = 99.835%
Min downtime = 866 minutes

 19

Proposed Preventative Proposed Preventative
MaintenanceMaintenance

► Non-Birth-Death process with 6 states, 6 Non-Birth-Death process with 6 states, 6
parameters:parameters:
 SS00 – UP state, first stage of lifetime – UP state, first stage of lifetime

 SS11 – UP state, second stage of lifetime – UP state, second stage of lifetime

 SS22 – DOWN state, Resin reboot – DOWN state, Resin reboot

 SS33 – UP state, inspecting memory use – UP state, inspecting memory use

 SS44 – UP state, inspecting memory use – UP state, inspecting memory use

 SS55 – DOWN state, preventative restart – DOWN state, preventative restart

 λλ2ndstage 2ndstage = 1/6 hrs= 1/6 hrs

 λλfailure failure = 1/2 hrs= 1/2 hrs

 µµrestart_resin_worst restart_resin_worst = 47 seconds= 47 seconds

 λλinspect inspect = Memory use inspection rate= Memory use inspection rate

 µµinspect inspect = 21,627 microseconds= 21,627 microseconds

 µµrestart_resin_pm restart_resin_pm = 3 seconds= 3 seconds

 20

Benefits of CTMCs + Fault InjectionBenefits of CTMCs + Fault Injection
► Able to model and analyze different styles of Able to model and analyze different styles of

self-healing mechanismsself-healing mechanisms
► Quantifies the impact of mechanism details Quantifies the impact of mechanism details

(success rates, recovery times etc.) on the (success rates, recovery times etc.) on the
system’s operational constraints (availability, system’s operational constraints (availability,
production targets, production-delay reduction production targets, production-delay reduction
etc.)etc.)
 Engineering view AND Business viewEngineering view AND Business view

► Able to identify under-performing mechanismsAble to identify under-performing mechanisms
► Useful at design time as well as post-productionUseful at design time as well as post-production
► Able to control the fault-ratesAble to control the fault-rates

 21

Caveats of CTMCs + Fault-InjectionCaveats of CTMCs + Fault-Injection
► CTMCs may not always be the “right” toolCTMCs may not always be the “right” tool

 Constant hazard-rate assumptionConstant hazard-rate assumption
►May under or overstate the effects/impactsMay under or overstate the effects/impacts
►True distribution of faults may be differentTrue distribution of faults may be different

 Fault-independence assumptionsFault-independence assumptions
►Limited to analyzing near-coincident faultsLimited to analyzing near-coincident faults
►Not suitable for analyzing cascading faults (can we Not suitable for analyzing cascading faults (can we

model the precipitating event as an approximation?)model the precipitating event as an approximation?)
► Some failures are harder to replicate/induce than Some failures are harder to replicate/induce than

othersothers
 Better data on faults could improve fault-injection toolsBetter data on faults could improve fault-injection tools

► Getting detailed breakdown of types/rates of Getting detailed breakdown of types/rates of
failuresfailures
 More data should improve the fault-injection More data should improve the fault-injection

experiments and relevance of the resultsexperiments and relevance of the results

 22

Real-World Downtime Data*Real-World Downtime Data*
►Mean incidents of unplanned downtime in Mean incidents of unplanned downtime in

a year: 14.85 (n-tier web applications)a year: 14.85 (n-tier web applications)
►Mean cost of unplanned downtime (Lost Mean cost of unplanned downtime (Lost

productivity #IT Hours): productivity #IT Hours):
 2115 hrs (52.88 40-hour work-weeks)2115 hrs (52.88 40-hour work-weeks)

►Mean cost of unplanned downtime (Lost Mean cost of unplanned downtime (Lost
productivity #Non-IT Hours): productivity #Non-IT Hours):
 515.7 hrs** (12.89 40-hour work-weeks)515.7 hrs** (12.89 40-hour work-weeks)

* “IT Ops Research Report: Downtime and Other Top Concerns,”
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007

 23

Proposed Data-Driven Evaluation (7U)Proposed Data-Driven Evaluation (7U)
► 1. Gather failure data and specify fault-model1. Gather failure data and specify fault-model
► 2. Establish fault-remediation relationship2. Establish fault-remediation relationship
► 3. Select fault-injection tools to mimic faults in 13. Select fault-injection tools to mimic faults in 1
► 4. Identify Macro-measurements4. Identify Macro-measurements

 Identify environmental constraints governing system-Identify environmental constraints governing system-
operation (availability, production targets etc.)operation (availability, production targets etc.)

► 5. Identify Micro-measurements5. Identify Micro-measurements
 Identify metrics related to specifics of self-healing Identify metrics related to specifics of self-healing

mechanisms (success rates, recovery time, fault-mechanisms (success rates, recovery time, fault-
coverage)coverage)

► 6. Run fault-injection experiments and record 6. Run fault-injection experiments and record
observed behaviorobserved behavior

► 7. Construct pre-experiment and post-experiment 7. Construct pre-experiment and post-experiment
modelsmodels

 24

The 7U-Evaluation MethodThe 7U-Evaluation Method

 25

Preliminary Work – Control ModelsPreliminary Work – Control Models

►ObjectiveObjective
 Can we reason about the stability of the system Can we reason about the stability of the system

when the system has multiple repair choices for when the system has multiple repair choices for
individual faults using Control Theory?individual faults using Control Theory?

 Can we regulate availability/reliability Can we regulate availability/reliability
objectives?objectives?

 What are the pros & cons of trying to use What are the pros & cons of trying to use
Control Theory in this context?Control Theory in this context?

 26

Preliminary Work – Control DiagramPreliminary Work – Control Diagram

Expected Downtime = f(Reference/Desired Success Rate)
Measured Downtime = f(Actual Success Rate)
Smoothed Downtime Estimate f(Actual Success Rate)

 27

Preliminary Work – Control ParametersPreliminary Work – Control Parameters

► D_E(z) – represents the occurrence of faults D_E(z) – represents the occurrence of faults
 Signal magnitude equals worst case repair time/desired Signal magnitude equals worst case repair time/desired

repair time for a faultrepair time for a fault
► Expected downtime = f(Reference Success Rate)Expected downtime = f(Reference Success Rate)
► Smoothed downtime estimate = f(Actual Success Smoothed downtime estimate = f(Actual Success

Rate)Rate)
► Downtime error – difference between desired Downtime error – difference between desired

downtime and actual downtime incurreddowntime and actual downtime incurred
► Measured Downtime – repair time impact on Measured Downtime – repair time impact on

downtime. downtime.
 0 for transparent repairs or 0 < r <= D_E(k) if not0 for transparent repairs or 0 < r <= D_E(k) if not

► Smoothed Downtime Estimate – the result of Smoothed Downtime Estimate – the result of
applying a filter to Measured Downtimeapplying a filter to Measured Downtime

 28

Preliminary SimulationsPreliminary Simulations

► Reason about stability of repair selection
controller/subsystem, R(z), using the poles of
transfer function R(z)/[1+R(z)H_R(z)]

► Show stability properties as expected/reference
success rate and actual repair success rate vary

► How long does it take for the system to become
unstable/stable

 29

Preliminary Work – Desired GoalPreliminary Work – Desired Goal

► Can we extend the basic model to reason
about repair choice/preferences?

 30

ConclusionsConclusions
► Dynamic instrumentation and fault-injection lets Dynamic instrumentation and fault-injection lets

us transparently collect data “in-situ” and us transparently collect data “in-situ” and
replicate problems “in-vivo”replicate problems “in-vivo”

► The CTMC-models are flexible enough to The CTMC-models are flexible enough to
quantitatively analyze various styles and quantitatively analyze various styles and
“impacts” of repairs“impacts” of repairs

► We can use them at design-time or post-We can use them at design-time or post-
deployment timedeployment time

► The math is the “easy” part compared to getting The math is the “easy” part compared to getting
customer data on failures, outages, and their customer data on failures, outages, and their
impacts.impacts.
 These details are critical to defining the notions of These details are critical to defining the notions of

“better” and “good” for these systems“better” and “good” for these systems

 31

Future WorkFuture Work
► More experiments on an expanded set of More experiments on an expanded set of

operating systems using more server-operating systems using more server-
applicationsapplications
 Linux 2.6Linux 2.6
 OpenSolaris 10OpenSolaris 10
 Windows XP SP2/Windows 2003 ServerWindows XP SP2/Windows 2003 Server

► Modeling and analyzing other self-healing Modeling and analyzing other self-healing
mechanismsmechanisms
 Error Virtualization (From STEM to SEAD, Locasto et. Error Virtualization (From STEM to SEAD, Locasto et.

al Usenix 2007)al Usenix 2007)
 Self-Healing in OpenSolaris 10Self-Healing in OpenSolaris 10

► Feedback control for policy-driven repair-Feedback control for policy-driven repair-
mechanism selectionmechanism selection

 32

AcknowledgementsAcknowledgements
► Prof. Gail Kaiser (Advisor/Co-author), Ritika Prof. Gail Kaiser (Advisor/Co-author), Ritika

Virmani (Co-author)Virmani (Co-author)
► Prof. Angelos Keromytis (Secondary Advisor), Prof. Angelos Keromytis (Secondary Advisor),

Carolyn Turbyfill Ph.D. (Stacksafe Inc.), Prof. Carolyn Turbyfill Ph.D. (Stacksafe Inc.), Prof.
Michael Swift (formerly of the Nooks project at Michael Swift (formerly of the Nooks project at
UW now a faculty member at University of UW now a faculty member at University of
Wisconsin), Prof. Kishor Trivedi (Duke/SHARPE), Wisconsin), Prof. Kishor Trivedi (Duke/SHARPE),
Joseph L. Hellerstein Ph.D., Dan Phung Joseph L. Hellerstein Ph.D., Dan Phung
(Columbia University), Gavin Maltby, Dong (Columbia University), Gavin Maltby, Dong
Tang, Cynthia McGuire and Michael W. Shapiro Tang, Cynthia McGuire and Michael W. Shapiro
(all of Sun Microsystems).(all of Sun Microsystems).

►Our Host: Matti Hiltunen (AT&T Research)Our Host: Matti Hiltunen (AT&T Research)

 33

Questions, Comments, Queries?Questions, Comments, Queries?

Thank you for your time and attentionThank you for your time and attention

For more information contact:For more information contact:
Rean GriffithRean Griffith

rg2023@cs.columbia.edurg2023@cs.columbia.edu

 34

Extra SlidesExtra Slides

 35

How Kheiron WorksHow Kheiron Works
►Key observationKey observation

 All software runs in an execution environment All software runs in an execution environment
(EE), so use it to facilitate performing (EE), so use it to facilitate performing
adaptations (fault-injection operations) in the adaptations (fault-injection operations) in the
applications it hosts.applications it hosts.

►Two kinds of EEsTwo kinds of EEs
 Unmanaged (Processor + OS e.g. x86 + Unmanaged (Processor + OS e.g. x86 +

Linux)Linux)
 Managed (CLR, JVM)Managed (CLR, JVM)

►For this to work the EE needs to provide 4 For this to work the EE needs to provide 4
facilities…facilities…

 36

EE-SupportEE-Support

IMetaDataImport,
IMetaDataEmit APIs

Custom classfile
parsing & editing
APIs + JVMTI
RedefineClasses

N/A for
compiled
C-programs

Metadata
augmentation

Assembly, type &
method metadata +
MSIL

Classfile constant
pool + bytecode

.symtab, .debug
sections

Execution unit
metadata

MSIL rewritingBytecode rewritingTrampolines +
Dyninst

Program
control

ICorProfilerInfo
ICorProfilerCallback

JVMTI callbacks +
API

ptrace, /procProgram
tracing

CLR 1.1JVM 5.xELF Binaries

Managed Execution EnvironmentUnmanaged
Execution
Environment

EE Facilities

 37

Kheiron/CLR & Kheiron/JVM OperationKheiron/CLR & Kheiron/JVM Operation

SampleMethod

Bytecode
Method
body

SampleMethod

Bytecode
Method
body

_SampleMethod SampleMethod

New
Bytecode
Method
Body

Call
_Sample
Method

_SampleMethod

Bytecode
Method
body

A B C
Prepare
Shadow

Create
Shadow

SampleMethod(args) [throws NullPointerException]
 <room for prolog>
 push args
 call _SampleMethod(args) [throws NullPointerException]
 { try{…} catch (IOException ioe){…} } // Source view of _SampleMethod’s body
 <room for epilog>
 return value/void

 38

Kheiron/CLR & Kheiron/JVM Fault-Kheiron/CLR & Kheiron/JVM Fault-
RewriteRewrite

 39

Kheiron/C OperationKheiron/C Operation

Kheiron/C

Dyninst API

Dyninst Code

ptrace/procfs

void foo(int x, int y)
{
 int z = 0;
}

Snippets
C/C++

Runtime
Library

Points

ApplicationMutator

 40

Kheiron/C – Prologue ExampleKheiron/C – Prologue Example

 41

Kheiron/CLR & Kheiron/JVM Kheiron/CLR & Kheiron/JVM
FeasibilityFeasibility

Kheiron/CLR Overheads
when no adaptations active

Kheiron/JVM Overheads
when no adaptations active

 42

Kheiron/C FeasibilityKheiron/C Feasibility

Kheiron/C Overheads
when no adaptations active

 43

Kheiron SummaryKheiron Summary
►Kheiron supports contemporary managed Kheiron supports contemporary managed

and unmanaged execution environments.and unmanaged execution environments.
►Low-overhead (<5% performance hit).Low-overhead (<5% performance hit).
►Transparent to both the application and Transparent to both the application and

the execution environment.the execution environment.
►Access to application internalsAccess to application internals

 Class instances (objects) & Data structuresClass instances (objects) & Data structures
 Components, Sub-systems & MethodsComponents, Sub-systems & Methods

►Capable of sophisticated adaptations.Capable of sophisticated adaptations.
►Fault-injection tools built with Kheiron Fault-injection tools built with Kheiron

leverage all its capabilities.leverage all its capabilities.

 44

Quick Analysis – End User ViewQuick Analysis – End User View
► Unplanned Downtime (Lost productivity Non-IT Unplanned Downtime (Lost productivity Non-IT

hrs) per year: 515.7 hrs (30,942 minutes).hrs) per year: 515.7 hrs (30,942 minutes).
► Is this good? (94.11% Availability)Is this good? (94.11% Availability)

► Less than two 9’s of availabilityLess than two 9’s of availability
 Decreasing the down time by an order of magnitude Decreasing the down time by an order of magnitude

could improve system availability by two orders of could improve system availability by two orders of
magnitudemagnitude

