Tools and Technigues for Designing
and Evaluating Self-Healing| Systems
Rean Griffith, Ritika Virmani, Gail Kaiser

Programming Systems LLab) (PSL)
Columbia University.

Presented by
Rean Griffith

Overview

» Introduction

» Challenges

» Problem

» Hypothesis

» Experiments

» Conclusion & Future Work

Introduction

» A self-healing system *...automatically
detects, diagnoses and repairs localized

software and hardware problems” — The

Vision of Autonomic Computing 2003’ IEEE Computer
Society

Challenges

» How do we evaluate the efficacy of a self-
healing system and its mechanisms?

How do we quantify the impact of the
Droblems these systems should resoelve?

Jow can we reason about expected benefits

for systems currently lacking self-healing
mechanisms?

How do we quantify the efficacy of individual
and combined self-healing mechanisms and
reason about tradeoffs?

How do we identify sub-optimal mechanisms?

Motivation

» Performance metrics are not a perfect
proxy. for “better self-healing capabilities”
Faster = "Better at self-healing”
Faster = "Has better self-healing facilities™

» Performance metrics provide insights intoe
the feasibility off using a self-healing
system with its self-healing mechanisms
active

» Performance metrics are still important,
but they are not the complete story

Problem

» Evaluating self-healing| systems and their
mechanisms Is hon-trivial

Studying the failure behavior of systems can
be difficult

Finding| fault-injection tooels that exercise the
remediation mechanisms available is difficult

Multiple styles of healing to consider (reactive,
preventative, proactive)

Accounting for imperfect repair scenarios
Partially automated repairs are possible

Proposed Selutions

» Studying failure behavior

“In-situ™ ebservation in deployment
environment via dynamic instrumentation tooels
» [dentifying suitable fault-injection tools
“In-vivo™ fault-injection at the appropriate
granularity via runtime adaptation teols
» Analyzing multiple remediation styles and
repair scenarios (perfect vs. imperfect
repair, partially automated healing etc.)

Mathematical models (Continuous Time
Markov: Chains, Control Theory models etc.)

>

>

Hypotheses

Runtime adaptation IS a reasonable technology: for
implementing efficient and flexible fault-injection tools

Mathematical models e.g. Continuous: Time Markov
Chains (CTMCs), Markov: Reward Models and Control
Theory models are a reasonable framework for analyzing
system failures, remediation mechanisms and their
Impact on system operation

Combining runtime adaptation with mathematical models
allows us to conduct fault-injection experiments that can
be used to investigate the link between the details ofi a
remediation mechanism and the mechanism’s impact on
the high-level goals governing the system’s operation,
supporting the comparison of individual or combined
mechanisms

Runtime Fault-Injection Toeols

» Kheiron/aVM (ICAC 2006)

Uses byte-code rewriting to inject faults into
running Java applications

Includes: memory leaks, hangs, delays etc.
Tiwo other versions of Kheiron exist (CLR & C)
C-version uses Dyninst binary rewriting tool

» Nooks Device-Driver Fault-Injection Tools
Developed at UW for Linux 2.4.18 (Swift et. al)
Uses the kernel module interface to inject faults
Includes: text faults, stack faults, hangs etc.
We ported it to Linux 2.6.20 (Summer 07)

9

Mathematical Technigues

» Continuous Time Markov: Chains (PMCCS-8)
Reliability: & Availability Analysis
Remediation styles

» Markov: Reward Networks (PMCCS-8)

Failure Impact (SLA penalties, downtime)

Remediation Impact (cost, time, [abor,
production delays)

» Control Theory Models: (Preliminary: Work)
Regulation off Availability/Reliability: Objectives
Reasoning about Stability:

10

Fault-Injection Experiments

» Objective

To inject faults into the components a multi-
component n-tier web application — specifically

the application server and Operating System
components

Observe, its responses and the responses of any
remediation mechanisms available

Model and evaluate available mechanisms
Identify weaknesses

11

Experiment Setup

Target: 3-Tier Web Application

TPC-W Web-application

Resin 3.0.22 Web-server and (Java) Application Server
Sun Hotspot JVM v1.5

MySQL 5.0.27

Linux 2.4.18

Remote Browser Emulation clients to simulate user loads

12

[Healing Mechanisms Available

» Application Server
Automatic restarts

» Operating System
Nooks' device driver protection framework
Manual system reboot

13

Metrics

» Continueus Time Markov: Chains (CTMCs)
Limiting/steady-state availability:
Yearly downtime
Repair success rates (fault-coverage)
Repair times

» Markov: Reward Networks

Downtime costs (time, money, #Sservice Visits
etc.)

Expected SLA penalties

14

Application Server Memory: Leaks

» Memory: leak condition causing an
automatic applications server restart every
8.1593 hours (95% confidence interval)

Resin Memory-l.eak Handler

Analysis
» Analyzing perfect recovery: e.d. e
mechanisms addressing resource (J——{)

lL_repair 1‘

leaks/fatal crashes
S, — UP'state, system working

S, — DOWN state, system
restarting

Results:

... = 47 seconds Steady state
availability: 99.838%
> AttaChlng a value to each state Downtime per year:
allows us to evaluate the 866 minutes
cost/time impact associated with

these fallures

railabili a) per ye: Ex pected penalties
~35 mins (BO6 - 5)*$p
~53 mins (BO6 - 53)*$p

~526 mins (866 - 526)*%p
~~5256 mins $0 0

Linux w/INooks Recovery AnaIyS|s

» Analyzing imperfect recovery e.qg.
device driver recovery using Nooks

S, — UP state, system working

S, — UP state, recovering failed
driver

S, — DOWN state, system reboot

“nooks_recovery — 41093 MU seconds
U o0 — 82 SEcoNds

C — coverage factor/success rate

17

Resin + Linux + Nooks AnaIyS|s

» Composing Markov chains
S, — UP state, system working
S, — UP state, recovering failed
driver
S, — DOWN state, system reboot

S; — DOWN state, Resin reboot

= 4 093 mu seconds

IJ NOOKS_recovery.

U poot = 82 SECONS

C — coverage factor

Max availability = 99.835%
Min downtime = 866 minutes

= 47/ seconds

I"l restart_resin
18

Proposed Preventative
Malntenance

» Non-Birth-Death process with 6 states, 6
parameters:
S, — UP state, first stage of lifetime

S; — UP state, secondi stage of lifetime
S, — DOWN state, Resin reboot
S; — UP state, inspecting memory: use

S, — UP state, inspecting memory: use
S. — DOWN state, preventative restart
Aondstage = 1/6 1S

A= 1/2 hrs

failure

= 47 seconds

I“l restart_resin_worst —

A = Memory use inspection rate

inspect

Minspec = 21,627 microseconds

= 3 seconds

IJ restart_resin_pm

Benefits off CTMCs + Fault Injection

» Able to model and analyze different styles of
self-healing mechanisms

» Quantifies the impact of mechanism details
(success rates, recovery times etc.) on the
system’s operational constraints (availability,
production targets, production-delay reduction
etc.)

Engineering view AND: Business view
» Able to identify under-performing mechanisms
» Useful at design time as welll as' post-production
» Able to control the fault-rates

20

Caveats off CTMCs + Fault-Injection

» CI'MCs may not always be the “right™ tool
Constant hazard-rate assumption

» May under or overstate the effects/impacts

» True distribution of faults may: be different
Fault-independence assumptions

» [imited to analyzing near-coincident faults

» Not suitable for analyzing cascading faults (can we
model the precipitating event as an' approximation?)

» Some failures are harder to replicate/induce than
others
Better data on faults could improve fault-injection tools
» Getting detailed breakdown of types/rates of
failures

More data should improve the fault-injection
experiments and relevance of the results 21

Real-World Downtime Data™

» Mean incidents of unplanned downtime in
a year: 14.85 (n-tier web applications)

» Mean cost of unplanned downtime (Lost
productivity #IT Hours):

2115 hrs (52.88 ' 40-hour work-weeks)

» Mean cost of unplanned doewntime (Lost
productivity: #Non-I'Tf Hours):

515.7 hrs** (12.89 40-hour woerk-weeks)

*“IT Ops Research Report: Downtime and Other Top Concerns,”
StackSafe. July 2007. (Web survey of 400 IT professional panelists, US Only)
** "Revive Systems Buyer Behavior Research," Research Edge, Inc. June 2007

22

Proposed Data-Driven Evaluation (7U)

» 1. Gather failure data and specifiy fault-model
» 2. Establish fault-remediation relationship
» 3. Select fault-injection tools te mimic faults in 1

» 4, Identify Macro-measurements
Identify environmentall constraints geverning system-
operation (availability, production targets etc.)

» 5. Identify Micro-measurements

Identify: metrics related to specifics off self-healing
mechanisms (Success rates, recovery. time, fault-
coverage)
» 6. Run fault-injection experiments and! record
observed behavior

» /. Construct pre-experiment and post-experiment:
modelc

The /U-Evaluation Method

= labor, production
} in the environment
of interast

Gather data on existing
remediations (manual and/or
automated)

velop fault-injection
s capable of
inducing/replicating the faults
of interest from Step 1

straints governing
tion of the
given env
reliability, availatility,
serviceability, goodput, SLA
satisfaction or SLA penalty
avoidance

Construct pre-experiment and
post-experiment models for
analysis and comparison

Fun fault-injection experiments
to exercise remediations and
study the failure-behavior of
the systern

Decide on
micro-measurements
(guantitative measures related

o the s;:-e-:;éﬁc_

24

Preliminary: Work — Controll Models

» Objective

Can we reason about the stability of the system
when the system has multiple repair choices for
individual faults using Control Theory?

Can we regulate availability/reliability
objectives?

What are the pros & cons of trying to use
Control Theory: in this context?

25

Preliminary: Work — Control Diagram

Expected Downtime = f(Reference/Desired Success Rate)
Measured Downtime = f(Actual Success Rate)
Smoothed Downtime Estimate f(Actual Success Rate)

26

Preliminary: Work — Control Parameters

» DI E(Z) — represents the occurrence of faults

Signal magnitude eqluals worst case repair time/desired
repair time for a fault

» Expected downtime = f(Reference Success Rate)

> Smog)thed downtime estimate = f(Actual Success
Rate

» Downtime error — difference between desired
downtime and actual downtime incurred

> Measured Downtime = repair time impact on
downtime.
0 for transparent repairs or 0 < r <= D_E(k) if not

» Smoothed Downtime Estimate — the result of:
applying a filter tor Measured Downtime 27

Preliminary: Simulations

Reason about sta

ility of repair selection

controller/subsystem, R(z), using the poles of

transfer function

R(z)/[1+R(z)H_R(z)]

Show stability properties as expected/reference
success rate and actual repair success rate vary

How long does it take for the system to become

unstable/stable

28

Preliminary: Work — Desired Goal

Ale a6 ey t-:‘.‘!:
F; LT H mMe

Can we extend the basic model to reason
about repair choice/preferences?

29

Conclusions

» Dynamic instrumentation and! fault-injection lets
us transparently collect data “in-situ™ and
replicate problems “in-vivo”

» The CIIMC-models are flexible enough to
guantitatively’ analyze various styles and
“Impacts” of repairs

» We can use them at design-time or post-
deployment time

» The math is the “easy” part compared to getting
customer data on failures, outages, and their
Impacts.

These details are criticall to defining the notions ofi
“better” and “good” for these systems 3

Future Work

» More experiments on ani expanded set of
operating systems using more Sserver-
applications

Linux 2.6
OpenSolaris 10
Windows XP: SP2/Windows 2003 Server

» Modeling and analyzing other self-healing
mechanisms

Error Virtualization (From STEM to SEAD, Locasto et.
al Usenix 2007)

Self-Healing in OpenSolaris 10

» Feedback control for policy-driven repair-
mechanism selection 3

Acknowledgements

» Prof. Gail Kaiser (Advisor/Co-author), Ritika
Virmani (Co-author)

» Prof. Angelos Keromytis (Secondary Adwso?
Carolyn Turbyfill Ph.D. (Stacksafe Inc.), Pro
Michael Swift (formerly of the Nooks project at
UW now: a faculty member at University: of
Wisconsin), Profi. Kishor Trivedi (Duke/SHARPE),
Joseph L. Hellerstein Ph. D., Dan Phung
(Columbia University Gavm Maltb Don
Tlang, Cynthia McGwre and Michael W Shaplro

(@ll of Sun Microsystems).
» Our Host: Matti Hiltunen (AT&T Research)

32

Questions, Comments, Queries?

Thank you for your time and attention

For more information contact:
Rean Griffith
[g2023@cs.columbia.edu

Extra Slides

How Kheiron Works

» Key observation

All software runs in an execution environment
(EE), so use it to facilitate performing
adaptations (fault-injection; eperations) in the
applications it hosts.

» Two kinds ofi EES

Unmanaged (Processor + OS e.g. x86 +
Linux)

Managed (CLR, JVM)

» For this to work the EE needs to provide 4
facilities...

35

EE-Support

EE Facilities Unmanaged Managed Execution Environment
Execution
Environment
ELF Binaries JVM 5.x CLR 1.1
Program ptrace, /proc JVMTI callbacks + | ICorProfilerInfo
tracing API ICorProfilerCallback
Program Trampolines + | Bytecode rewriting | MSIL rewriting
control Dyninst
Execution unit | .symtab, .debug | Classfile constant Assembly, type &
metadata sections pool + bytecode method metadata +
MSIL
Metadata N/A for Custom classfile IMetaDatalmport,
augmentation | compiled parsing & editing IMetaDataEmit APIs
C_programs APIs + JVMTI

RedefineClasses

Kheiron/CLR & Kheiron/JVM Operation

A B C
Prepare Creat New

— Bytecode
Shadow Shadaow Method

Bytecode |:> Bytecode |:ql> Bod Bytecode

Method Method y Method

body body call body
_Sample
/ /\ }sh()d \
SampleMethod SampleMethod _SampleMethod SampleMethod _SampleMethod

SampleMethod(args) [throws NullPointerException]
<room for prolog>
push args
call _SampleMethod(args) [throws NullPointerException]
{ try{...} catch (IOException ioe){...} } // Source view of _SampleMethod’s body
<room for epilog>

I 37
return value/void

Kheiron/CLR & Kheiron/JVM Fault-
Rewrite

public void someMethod()
{

call StatsCop.methodEnter("someMethod") // profile method enter
call FaultManager.injectFault("someMethod") // lookup fault to inject
call _someMethod(); // call original implementation of someMethod
call StatsCop.methodEXxit("someMethod") // profile method exit

38

Kheiron/C Operation

Mutator

Kheiron/C

Dyninst API

Dyninst Code

ptrace/procfs

Application

void foo(int X, int y)

{

Points<: intz=0;
)

Snippets

C/C++
Runtime
Library

39

Kheiron/C — Prologue Example

staticinti=0Q

08049100 <)
campile time g :
void SomeFunc() [= : fd eh
i 410 EDJMEL{]SGSDB addl S
i=i+10 T

80491 Gb

ﬂ runtime transformation

08049100 <_Z8SomeFuncy=:
B049100: 29 a0 9968 40 jmp 0x406899a0 (jump o trampoline)
8049103: cd 6o 05 08 0a |r1:5r.rur‘r|nn mangled by trampoline insertion
804910a: &d pop Yeebp (next vahd instruction)
804510b: cd ret {return to calling function)

4088990 =trampoling>:

save CPU registers

il inserted assembly from snippet e.g. a function call
restore CPU registers

jump to saved/relocated instructions

instruction)

40

=
]
5
2
4
k=
E
o
2
=
@
A
E
S
£
@
o
£
[
£
]
]
]
-8

Kheiron/CLR & Kheiron/JVM
Feasibility

Performance comparison - normalized to w/o profiler - no repair
active

Wwithout profiler
#with profiler

SciMark Linpack
Benchmarks

Kheiron/CILR Overheads
when no adaptations active

Performance normalized to wio profiler

Performance comparison - normalized to wio profiler - no repair

active

SciMark Linpack
Benchmarks

Kheiron/JVM Overheads
when no adaptations active

W without profiler
By with profiler

41

L
=
=]

o}

=
[ok]

M

™
E
[
Q
-
Lot]
L]
c
m
E
=

2
[
Lok

o

Kheiron/C EFeasibility

Performance comparison SciMark - normalized to
w/o Dyninst - simple jump into adaptation library

W Normalized w/o Dyninst
O Normalized w/Dyninst

Kheiron/C Overheads

when no adaptations active

42

Kheiren Summary.

» Kheiron supports contemporary. managed
and unmanaged execution environments.

» | ow-overhead (<5% performance hit).

» Transparent to both the application and
the execution environment.

» Access to application internals
Class instances (ebjects) & Data structures
Components, Sub-systems & Methods

» Capable of sophisticated adaptations.

» Fault-injection teols built with Kheiron
leverage all its capabilities.

43

Quick Analysis — End User View

» Unplanned Downtime (lLost productivity: Non-1T
hrs) per year: 515.7 hrs (30,942 minutes).

» [s this good? (94.11% Availability)
Availability Guarantee | Max Downtime Per Year \
99.999 ~35 mins
99.99 ~353 mins

99.9 ~526 mins
99 ~5256 mins

» |Less than two 9's of availability

Decreasing the down time by an order of magnitude

could improve system availability: by two orders ofi
magnitude

44

